微信公众号
联系我们
Conduct us
了解更多我们的详细信息,请致电
0792-8251070
地址:江西省九江市濂溪区学府路99号
电话:0792-8251070
传真:0792-8251070
联系人:九江市濂溪区第一中学
教师园地 您的当前位置: 首页 >> 教育科研 >> 教师园地
2020年高考数学试卷分析
时间:2021-01-12 10:59:51 作者:融媒体中心 点击:

2020年高考数学试卷分析

高三数学备课组

 

2020年高考数学试题落实立德树人根本任务,贯彻德智体美劳全面发展教育方针,坚持素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向作用。试题重视数学本质,突出理性思维、数学应用、数学探究、数学文化的引领作用,突出对关键能力的考查。试题展现了我国社会主义建设成就与科学防疫的成果,紧密联系社会实际,设计真实的问题情境,具有鲜明的时代特色。试卷体现了基础性、综合性、应用性和创新性的考查要求,难度设计科学合理,很好把握了稳定与创新、稳定与改革的关系,对协同推进高考综合改革、引导中学数学教学都将起到积极的作用。

1、发挥学科特色,“战疫”科学入题一是揭示病毒传播规律,体现科学防控。用数学模型揭示病毒传播规律,如新高考Ⅰ卷(供山东省使用)第6题,基于新冠肺炎疫情初始阶段累计感染病例数的数学模型的研究成果,考查相关的数学知识和从资料中提取信息的能力,突出数学和数学模型的应用;全国Ⅲ卷文、理科第4题以新冠肺炎疫情传播的动态研究为背景,选择适合学生知识水平的Logistic模型作为试题命制的基础,考查学生对指数函数基本知识的理解和掌握,以及使用数学模型解决实际问题的能力。二是展现中国抗疫成果。全国疫情防控进入常态化后,各地有序推进复工复产复学。新高考Ⅱ卷(供海南省使用)第9题以各地有序推动复工复产为背景,取材于某地的复工复产指数数据,考查学生解读统计图以及提取信息的能力。三是体现志愿精神。如全国Ⅱ卷理科第3题(文科第4题)是以志愿者参加某超市配货工作为背景设计的数学问题,考查学生对基本知识的掌握程度及运用所学知识解决实际问题的能力。

2突出理性思维,考查关键能力理性思维在数学素养中起着最本质、最核心的作用。数学科高考突出理性思维,将数学关键能力与“理性思维、数学应用、数学探究、数学文化”的学科素养统一在理性思维的主线上,在数学应用、数学探究等方面突出体现了理性思维和关键能力的考查。一是对批判性思维能力的考查。如全国Ⅰ卷理科第12题不仅考查学生运用所学知识分析、解决问题的能力,同时也考查学生的观察能力、运算能力、推理判断能力与灵活运用知识的综合能力。全国Ⅱ卷理科第16题以立体几何基础知识为背景,将立体几何的问题与逻辑命题有机结合,多侧面、多层次考查学生对相关知识的掌握情况。二是对数学阅读理解能力的考查。如全国Ⅱ卷理科第12题以周期序列的自相关性为背景,要求判断试题给出的4个周期序列是否满足题设条件,主要考查学生对新概念的理解、探究能力。试题的编制及考查的内容都很好地反映了课程改革理念,对培养学生的创新应用意识起到积极引导作用。新高考Ⅰ卷第12题以信息论中的重要概念信息熵为背景,结合中学所学数学知识,编制信息熵数学性质的4个命题,考查学生获取新知识的能力和对新问题的理解探究能力。三是对信息整理能力的考查。如全国Ⅲ卷文、理科第18题以当前社会关心的空气质量状况和在公园进行体育锻炼为背景,给出了某市100天中每天的空气质量等级和当天到某公园锻炼的人次的数据表,重点考查学生对概率统计基本思想、基本统计模型的理解和运用。全国Ⅰ卷文科第17题、全国Ⅱ卷文、理科第18题、新高考Ⅰ卷第19题(新高考Ⅱ卷第19题)等试题也通过数学模型的形式,考查学生整理和分析信息的能力。四是对数学语言表达能力的考查。如全国Ⅰ卷理科第21题考查利用导数判断函数单调性的方法、导数公式和导数运算法则,综合考查学生的逻辑推理能力、运算求解能力、推理论证能力、分类与整合的能力以及数学语言表达能力。全国Ⅲ卷理科第21题、新高考Ⅰ卷第21题、第22题等也都对数学语言表达能力的逻辑性和条理性提出了较高的要求。

3坚持立德树人,倡导“五育”并举数学高考试题关注数学文化育人的价值,重视全面育人的要求,发挥数学科高考在深化中学课程改革、全面提高教育质量上的引导作用。一是体现以文化人。如全国Ⅱ卷文、理科第18题以沙漠治理为背景设计,考查学生分析和解决问题的能力、数据处理的能力,以及应用数学模型分析解决实际问题的能力。全国Ⅱ卷理科第14题、新高考Ⅱ卷第6题分别以垃圾分类宣传、扶贫工作为背景,设计了计数问题,考查学生对计数原理的理解程度。二是体现体育教育。身心健康是素质教育的重要内容,高考数学设计了以体育运动为问题情境的试题,体现了积极的导向作用。如全国Ⅰ卷理科第19题以3人的羽毛球比赛为背景,将概率问题融入常见的羽毛球比赛中,以参赛人的获胜概率设问,重在考查学生的逻辑思维能力,对事件进行分析、分解和转化的能力,以及对概率的基础知识特别是古典概率模型、事件的关系和运算、事件独立性等内容的掌握。新高考Ⅰ卷第5题(新高考Ⅱ卷第5题)关注学生的体育运动与体育锻炼,以此为背景设计了简单的计算问题。三是体现美育教育。数学科高考设计了体现数学美的试题,如全国Ⅰ卷文、理科第3题以世界建筑奇迹古埃及胡夫金字塔为背景,设计了正四棱锥的计算问题,将立体几何的基本知识与世界文化遗产有机结合。全国Ⅱ卷理科第4题以计算北京天坛的圜丘坛铺设的石板数量为背景,考查学生的分析问题能力和数学文化素养。题目贴近生活,反映了我国古代的文明成就,让学生对我国古代传统文化的代表——圜丘坛有了进一步的认识,培养学生理论联系实际的能力。全国Ⅱ卷文科第3题借助数学语言给出原位大三和弦与原位小三和弦的定义,并设计了一个简单计数问题,考查学生对新定义、新情景的学习能力,以及分析问题能力和数学文化素养。四是体现劳动教育。高考数学科将社会生产劳动实践情境与数学基本概念有机结合,发挥高考试题在培养劳动观念中的引导作用。新高考Ⅰ卷第15题(新高考Ⅱ卷第16题)在考查几何知识的同时,培养学生的数学应用意识。全国Ⅰ卷文科第17题以工业生产中的总厂分配加工业务问题为背景,考查学生应用所学的概率和统计知识对现实社会中实际数据的分析处理能力。

4坚持探索创新,推进高考内容改革一是考试内容的改革。2020年是山东、海南实行高考综合改革后的首次高考,数学不分文理科,2021年又将有8个省份使用新高考卷。过渡时期的数学科考试依据《新高考过渡期数学科考试范围说明》,科学设计考试内容,重点关注实验版高中数学课程标准和2017年版数学课程标准中的公共内容,并将这些内容确定为过渡时期的数学科考试的重点内容。同时,过渡时期的数学科考试内容改革关注新高考数学卷文理不分科的特点,关注高校对人才的选拔要求和数学在人才培养中的作用。二是题型和试卷结构的改革。新高考卷在题型和试卷结构上进行了调整。首先,引入了多选题和结构不良试题等新题型。多选题的引入,为数学基础和能力在不同层次的学生提供了发挥空间,可以更好地体现区分选拔功能;结构不良试题的引入,增强试题条件的开放性,引导学生更加注重思维的灵活性及策略选择。结构不良试题具有很好的开放性,对数学理解能力、数学探究能力的考查能够起到积极的作用。其次,调整了试卷结构。新高考卷包括单项选择题、多项选择题、填空题、解答题4个部分,其中:单项选择题8题40分,多项选择题4题20分,填空题4题20分,解答题取消选考题,6题70分,全卷总题量为22题。三是科学调控难度。数学科命题科学调控试卷难度,坚持数学科高考的基础性、综合性、应用性和创新性的考查要求,贯彻“低起点、多层次、高落差”的调控策略,发挥高考数学的选拔功能和良好的导向作用。“低起点”体现为试卷在选择题、填空题、解答题部分进行了系统设计,起始题起点低、入口宽,面向全体学生。“多层次”体现为试题的难度设计上重视难度和思维的层次性,如新高考卷的第10题、第11题、第20题,体现了解题方法的多样性,给学生提供多种分析问题和解决问题的途径。“高落差”体现为重视数学科高考的综合性、创新性,在试题的难度设计上不仅有层次性,而且在思维的灵活性、深刻性,方法的综合性、探究性和创造性等方面,科学把握试题的区分度,发挥数学科高考的选拔性功能。高中数学考试答题前需要做些什么一、提前进入数学情境高考数学考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考,保证数学满分答题状态。二、集中注意,消除焦虑怯场集中注意力是高考数学满分的基础,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松好的情绪可以帮助考试在高考数学时取得满分。三、沉着应战良好的开端是成功的一半,从高考考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手答题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高,冲击数学满分。高考数学如何拿分?选择题:每个5分,分值很高,要求前9个必须对,能全对当然最好啦。填空题:第四题或第五题会是多选题,这个要注意下,一般全对没什么压力。大题:一般结构是——送分题、三角函数、统计、简单数列题、几何证明、函数、不等式证明或者几何相关。选择和填空没什么说的,建议你买本《小题狂练》,练到25~35分钟就能写完,正确率什么的,第十题和第十五题,就这两个允许错,其他必须保证一次就对。注意,小题一般半小时没写完先空着。还有,考试时不要检查小题,简直浪费时间。大题,前三题完全送分,15~20分钟内解决加全对没有压力。大题第四题也是基本送分的,不会难,10分钟内要搞定加全对。倒数最后两题,如果卷子偏难,一般会是一题几何一题不等式证明。结构上总共有5个小题或者6个。首先你得做到这两题除了最后一小问其他都会写加全对,最起码第一问是必须对的。记住,先把这两题的第一问搞定,最后一问看都别看。完成以上任务要求你一遍搞定。如果你的正确率很不错,现在分数已经到130了。最不济,120是没问题的。第一遍答题:小题共75分,除了10和15题都是送分就不说了,能写多快就写多块,剩下的这两题,每题最多给5分钟,没想出来就放弃,去写大题去。大题前四题都不难,半小时写完是没问题的。写到这大概一小时了,这时候花十分钟解决最后两题第一问,有能力就第二问顺路解决啦!第一遍结束。第二遍答题:如果前面有没写的,这时候在花10分钟去写,时间到了就蒙吧,别抱着不放。按照最坏情况,这时已经只剩40分钟了,你蒙了两个小题,10分没了,剩下的没写的约15分(7+8),就是说,只要经过锻炼,不遇上葛军,你在1小时20分时已经拿到了125分。最后两题都是分几小问的,如果是不等式证明,则该题一般是数列题,前两小问(假设共3小问)一般是求通项,这个不难。上小问的答案和最后一问是紧密相连的,注意思考彼此间的联系。比如我现在还记得的一种题型,数列题。第一问求通项,第二问是特例的不等式证明,第三问则是一般情况下的不等式证明,你要从第二问的解题过程里寻找哪些条件是在一般条件下也成立。找到的话最后一问拿点分还是不难的。然后是几何了。求焦点,求方程,证明某几个线段相加小于、大于或等于某个值啦,一般是这个节奏。集合题真没什么说的,就是多练,毕竟高中的几何题其实还是函数题,翻来覆去还是那几个公式,椭圆、双曲线什么的。平时多练习,见见各种题型,真不会就写公式,1、2分还是有的。再次统分,最起码有个130~135了(小题失去10分)。如果压轴题实在太难,前面的题你还有不确定的,就在最后留15分左右去搞定那10分。